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The small, round blue cell tumors (SRBCTs) of childhood, which
include neuroblastoma (NB), rhabdomyosarcoma (RMS), non-
Hodgkin lymphoma (NHL) and the Ewing family of tumors
(EWS), are so named because of their similar appearance on rou-
tine histology1. However, accurate diagnosis of SRBCTs is essen-
tial because the treatment options, responses to therapy and
prognoses vary widely depending on the diagnosis. As their
name implies, these cancers are difficult to distinguish by light
microscopy, and currently no single test can precisely distin-
guish these cancers. In clinical practice, several techniques are
used for diagnosis, including immunohistochemistry2, cytoge-
netics, interphase fluorescence in situ hybridization3 and reverse
transcription (RT)-PCR (ref. 4). Immunohistochemistry allows
the detection of protein expression, but it can only examine one
protein at a time. Molecular techniques such as RT-PCR are used
increasingly for diagnostic confirmation following the discovery
of tumor-specific translocations such as EWS-FLI1;
t(11;22)(q24;q12) in EWS, and the PAX3-FKHR; t(2;13)(q35;q14)
in alveolar rhabdomyosarcoma1 (ARMS). However, molecular
markers do not always provide a definitive diagnosis, as on occa-
sion there is failure to detect the classical translocations, due to
either technical difficulties or the presence of variant transloca-
tions.

Gene-expression profiling using cDNA microarrays permits a
simultaneous analysis of multiple markers, and has been used to
categorize cancers into subgroups5–8. However, despite the many
statistical techniques to analyze gene-expression data, none so

far has been rigorously tested for their ability to accurately dis-
tinguish cancers belonging to several diagnostic categories.

Artificial neural networks (ANNs) are computer-based algo-
rithms which are modeled on the structure and behavior of neu-
rons in the human brain and can be trained to recognize and
categorize complex patterns9. Pattern recognition is achieved by
adjusting parameters of the ANN by a process of error minimiza-
tion through learning from experience. They can be calibrated
using any type of input data, such as gene-expression levels gen-
erated by cDNA microarrays, and the output can be grouped into
any given number of categories. ANNs have been recently ap-
plied to clinical problems such as diagnosing myocardial in-
farcts10 and arrhythmias from electrocardiograms11 and
interpreting radiographs and magnetic resonance images12,13.
Here we applied ANNs to decipher gene-expression signatures of
SRBCTs and used them for diagnostic classification.

Calibration and validation of the ANN models
To calibrate ANN models to recognize cancers in each of the four
SRBCT categories, we used gene-expression data from cDNA mi-
croarrays containing 6567 genes. The 63 training samples (see
Supplemental Table A) included both tumor biopsy material (13
EWS and 10 RMS) and cell lines (10 EWS, 10 RMS, 12 NB and 8
Burkitt lymphomas (BL; a subset of NHL)). For two samples,
ST486 (BL-C2 and C4) and GICAN (NB-C2 and C7), we per-
formed two independent microarray experiments to test the re-
producibility of the experiments and these were subsequently
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Fig. 1 The artificial neural network. a, Schematic
illustration of the analysis process. The entire data-
set of all 88 experiments was first quality filtered
(1) and then the dimensionality was further re-
duced by principal component analysis (PCA) to
10 PCA projections (2), from the original 6567 ex-
pression values. Next, the 25 test experiments
were set aside and the 63 training experiments
were randomly partitioned into 3 groups (3). One
of these groups was reserved for validation and
the remaining 2 groups for calibration (4). ANN
models were then calibrated using for each sam-
ple the 10 PCA values as input and the cancer cat-
egory as output (5). For each model the
calibration was optimized with 100 iterative cycles
(epochs). This was repeated using each of the 3
groups for validation (6). The samples were again
randomly partitioned and the entire training
process repeated (7). For each selection of a vali-
dation group one model was calibrated, resulting
in a total of 3750 trained models. Once the mod-
els were calibrated they were used to rank the
genes according to their importance for the classi-
fication (8). The entire process (2–7) was repeated
using only top ranked genes (9). The 25 test ex-
periments were subsequently classified using all
the calibrated models. b, Monitoring the calibra-
tion of the models. The average classification error
per sample (using a summed square error function) is plotted during the
training iterations (epochs) for both the training and the validation samples. A
pair of lines, purple (training) and gray (validation), represents one model.
The decrease in the classification errors with increasing epochs demonstrates
the learning of the models to distinguish these cancers. The results shown are
for 200 different models, each corresponding to a random partitioning of the
data. All the models performed well for both training and validation as
demonstrated by the parallel decrease (with increasing epochs) of the aver-
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treated as separate samples. Filtering for a minimal level of ex-
pression reduced the number of genes to 2308 (Fig. 1a). Principal
component analysis (PCA) further reduced the dimensionality,
and we found that using the 10 dominant PCA components per
sample as inputs and four outputs (EWS, RMS, NB or BL) pro-
duced well-calibrated ANN models. These 10 dominant compo-
nents contained 63% of the variance in the data matrix. The
remaining PCA components contained variance unrelated to
separating the four cancers. The three-fold cross-validation pro-
cedure (see Methods) produced a total of 3750 ANN models, and
the training and validation was successful (Fig. 1b). In addition,
there was no sign of ‘over-training’ of the models, as would be
shown by a rise in the summed square error for the validation set
with increasing training iterations or ‘epochs’ (Fig. 1b). Using
these ANN models, all of the 63 training samples were correctly
assigned/classified to their respective categories, having received
the highest committee vote (average output) for that category.

Optimization of genes utilized for classification
We next determined the contribution of each gene to the classi-
fication by the ANN models by measuring the sensitivity of the
classification to a change in the expression level of each gene,
using the 3750 previously calibrated models (see Supplementary
Methods). In this way, we ranked the genes according to their
significance for the classification. We then determined the clas-
sification error rate using increasing numbers of these ranked
genes. The classification error rate minimized to 0% at 96 genes

(Fig. 1c). The 10 dominant PCA components for these 96 genes
contained 79% of the variance in the data matrix. Using only
these 96 genes, we recalibrated the ANN models (Fig. 1a) and
again correctly classified all 63 samples (Fig. 2). Moreover, multi-
dimensional scaling (MDS) analysis5 using these 96 genes clearly
separated the four cancer types (Fig. 3a). The top 96 discrimina-
tors represented 93 unique genes (Fig. 3b), as IGF2 was repre-
sented by three independent clones and MYC by two. Of the 96,
13 were anonymous expressed sequence tags (ESTs); 16 genes
were specifically expressed in EWS, 20 in RMS, 15 in NB and 10
in BL. Twelve genes were good discriminators on the basis of lack
of expression in BL and variable expression in the other three
types. One gene (EST; Clone ID 295985) discriminated EWS from
other cancer types by its lack of expression in this cancer. The re-
mainder of the genes was expressed in two of the four cancer
types. To our knowledge, of the 61 genes that were specifically
expressed in a cancer type, 41 have not been previously reported
as associated with these diseases.

Diagnostic classification and hierarchical clustering
We then tested the diagnostic classification capabilities of these
ANN models on a set of 25 blinded test samples. A sample is clas-
sified to a diagnostic category if it receives the highest vote for
that category and because this classifier has only four possible
outputs, all samples will be classified to one of the four cate-
gories. We therefore established a diagnostic classification
method based on a statistical cutoff to enable us to reject a diag-
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age summed square classification error per sample. In addition, there was no
sign of over-training: if the models begin to learn features in the training set,
which are not present in the validation set, this would result in an increase in
the error for the validation at that point and the curves would no longer re-
main parallel. c, Minimizing the number of genes. The average number of
misclassified samples for all 3750 models is plotted against increasing number
of used genes. The misclassifications minimized to zero using the 96 highest
ranked genes.
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nosis of a sample classified to a given category. If a sample
falls outside the 95th percentile of the probability distribu-
tion of distances between samples and their ideal output
(for example, for EWS it is EWS = 1, RMS = NB = BL = 0), its
diagnosis is rejected (see Methods).

The test samples contained both tumors (5 EWS, 5 RMS
and 4 NB) and cell lines (1 EWS, 2 NB and 3 BL). We also
tested the ability of these models to reject a diagnosis on 5
non-SRBCTs (consisting of 2 normal muscle tissues (Tests 9
and 13) and 3 cell lines including an undifferentiated sar-
coma (Test 5), osteosarcoma (Test 3) and a prostate carci-
noma (Test 11)). Using the 3750 ANN models calibrated
with the 96 genes, we correctly classified 100% of the 20
SRBCT tests (Table 1 & Fig. 2) as well as all 63 training sam-
ples (see Supplemental Table A). Three of these samples,
Test 10, Test 20 and EWS-T13 were correctly assigned to
their categories (RMS, EWS and EWS respectively), having
received the highest vote for their respective categories.
However, their distance from a perfect vote was greater
than the expected 95th percentile distance (Fig. 2); there-
fore, we could not confidently diagnose them by this crite-
rion. All of the five non-SRBCT samples were excluded from
any of the four diagnostic categories, since they fell outside
the 95th percentiles. Using these criteria for all 88 samples,
the sensitivity of the ANN models for diagnostic classifica-
tion was 93% for EWS, 96% for RMS and 100% for both NB
and BL. The specificity was 100% for all four diagnostic cat-
egories. Also, hierarchical clustering14 using the 96 genes,
identified from the ANN models, correctly clustered all 20
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Fig. 2 Classification and diagno-
sis of the samples. A sample is clas-
sified to a cancer category
according to its highest commit-
tee vote (average of all ANN out-
puts) and placed in the
corresponding plot. Plotted, for
each sample, is the distance from
its committee vote to the ideal
vote for that diagnostic category
(for example, for EWS, it is EWS =
1, RMS = NB = BL = 0). Thus a per-
fectly classified sample would be
plotted with a distance of zero.
Training samples are displayed as
squares and test samples as trian-
gles. Non-SRBCT samples are col-
ored black. All SRBCT samples,
including the 20 tests, were cor-
rectly classified. The distance cor-
responding to the 95th percentile
for the training samples is repre-
sented by a dashed line, outside
which the diagnosis of a sample is
rejected. The diagnosis of all 5
non-SRBCT test samples was re-
jected since they lie outside their
respective dashed lines. Three of
the SRBCT samples (EWS-T13,
TEST-10 and TEST-20) though
correctly classified could not be
confidently diagnosed.

Table 1 ANN diagnostic prediction

ANN committee vote
Sample ANN ANN Histological Source Source
label EWS RMS NB BL classification diagnosis diagnosis label

Test 1 0.01 0.07 0.76 0.06 NB NB NB-C IMR32 ATCC
Test 2 0.67 0.06 0.08 0.09 EWS EWS EWS-C CHOP1 NCI
Test 3 0.11 0.17 0.16 0.11 RMS - Osteosarcoma-C OsA-Cl ATCC
Test 4 0.00 0.95 0.06 0.03 RMS RMS ARMS-T ARMD1 CHTN
Test 5 0.11 0.11 0.25 0.10 NB - Sarcoma-C A204 ATCC
Test 6 0.98 0.04 0.10 0.03 EWS EWS EWS-T 9608P053 CHTN
Test 7 0.05 0.02 0.05 0.93 BL BL BL-C EB1 ATCC
Test 8 0.00 0.05 0.94 0.04 NB NB NB-C SMSSAN NCI
Test 9 0.22 0.60 0.03 0.06 RMS - Sk. Muscle SkM1 CHTN
Test 10 0.10 0.68 0.11 0.04 RMS - ERMS-T ERDM1 CHTN
Test 11 0.39 0.04 0.28 0.15 EWS - Prostate Ca.-C PC3 ATCC
Test 12 0.89 0.05 0.14 0.03 EWS EWS EWS-T SARC67 CHTN
Test 13 0.20 0.7 0.03 0.05 RMS - Sk. Muscle SkM2 CHTN
Test 14 0.03 0.02 0.90 0.07 NB NB NB-T NB3 DZNSG
Test 15 0.06 0.03 0.05 0.91 BL BL BL-C EB2 ATCC
Test 16 0.03 0.02 0.93 0.05 NB NB NB-T NB1 DZNSG
Test 17 0.01 0.90 0.05 0.03 RMS RMS ARMS-T ARMD2 CHTN
Test 18 0.06 0.04 0.04 0.88 BL BL BL-C GA10 ATCC
Test 19 0.99 0.02 0.04 0.05 EWS EWS EWS-T ET3 CHTN
Test 20 0.40 0.30 0.10 0.06 EWS - EWS-T 9903P1339 CHTN
Test 21 0.81 0.19 0.12 0.04 EWS EWS EWS-T ES23 MSKCC
Test 22 0.01 0.88 0.09 0.04 RMS RMS ERMS-T ERMD2 CHTN
Test 23 0.07 0.08 0.70 0.06 NB NB NB-T NB2 DZNSG
Test 24 0.05 0.87 0.06 0.03 RMS RMS ERMS-T RMS4 MSKCC
Test 25 0.05 0.02 0.89 0.06 NB NB NB-T NB4 DZNSG

Source label refers to the original name of the sample as designated by the source. Histological diagnosis is defined as cancer type suffixed with –T for a tumor
sample and –C for a cell line. Normal skeletal muscle (Sk. Muscle) is also included in the test set. The ANN classification as determined by the committee vote is
bolded. NCI: National Cancer Institute, National Institutes of Health, ATCC: American Type Culture Collection, MSKCC: Memorial Sloan-Kettering Cancer
Center, CHTN: Cooperative Human Tissue Network, DZNSG: German Cancer Research Center, Heidelberg.
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Fig. 3 Hierarchical clustering and multidimensional scaling analysis. The top
96 genes as ranked by the ANN models were used for the analysis. a,
Multidimensional scaling analysis. Shown here are two projections of the MDS
plot of the training samples. EWS are depicted as yellow circles, RMS as red, BL
as blue and NB as green. The samples clustered closely according to the 4 dif-
ferent cancer categories. b, Hierarchical clustering of the samples and genes.
Each row represents one of the 96 cDNA clones and each column a separate
sample. A pseudo-colored representation of the relative red intensity is shown
such that a red color indicates high expression and green color low expression,
with scale shown below. On the right are the IMAGE id., gene symbol, class in
which the gene is highly expressed (see Supplementary Methods), and the
ANN rank. *, genes that have not been reported to be associated with these
cancers. c, Enlargement of the hierarchical clustering dendrogram of the sam-

ples in b. All 63 training and the 20 test SRBCTs correctly clustered within their
diagnostic categories. In both cases where two samples were derived from the
same cell line, BL-C2 & C4, and NB-C2 and C7, each mapped adjacent to one
another in the same cluster. The scale shows the Pearson correlation coefficient
used to construct the dendrogram. The Pearson correlation cutoff was 0.54,
when the samples clustered into the four diagnostic categories.
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of the test samples (Fig. 3c). Moreover, the two pairs of samples
that were derived from two cell lines, BL-C2 and C4 (ST486) and
NB-C2 and C7 (GICAN), were adjacent to one another in the
same cluster.

Expression of FGFR4 on SRBCT tissue array
To confirm the effectiveness of the ANN models to identify

genes that show preferential high expression in specific cancer
types at the protein level, we performed immunohistochemistry
on SRBCT tissue arrays for the expression of fibroblast growth
factor receptor 4 (FGFR4). This tyrosine kinase receptor is ex-
pressed during myogenesis15 but not in adult muscle, and is of in-
terest because of its potential role in tumor growth16 and in
prevention of terminal differentiation in muscle17. Moderate to
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strong cytoplasmic immunostaining for FGFR4 was seen in all 26
RMSs tested (17 alveolar, 9 embryonal). We also observed gener-
ally weaker staining in EWS and NHL in agreement with the mi-
croarray results, except for one case of anaplastic large cell
lymphoma that was strongly positive (data not shown).

Discussion
Tumors are currently diagnosed by histology and immunohisto-
chemistry based on their morphology and protein expression,
respectively. However, poorly differentiated cancers can be diffi-
cult to diagnose by routine histopathology. In addition, the his-
tological appearance of a tumor cannot reveal the underlying
genetic aberrations or biological processes that contribute to the
malignant process. Here we developed a method of diagnostic
classification of cancers from their gene-expression signatures
and identified the genes that contributed to this classification.

We used the SRBCTs of childhood as a model because these
cancers occasionally present diagnostic difficulties. For example,
Ewing sarcoma is diagnosed by immunohistochemical evidence
of MIC2 expression18 and lack of expression of the leukocyte
common antigen CD45 (excluding lymphoma), muscle-specific
actin or myogenin (excluding RMS)19. However, reliance on de-
tection of MIC2 alone can lead to incorrect diagnosis as MIC2
expression occurs occasionally in other tumor types including
RMS and NHL (ref. 1).

Monitoring global gene-expression levels by cDNA microar-
rays provides an additional tool for elucidating tumor biology as
well as the potential for molecular diagnostic classification of
cancer5–8,20–22. Currently, classification and clustering tools using
gene-expression data have not been rigorously tested for diag-
nostic classification of more than two categories. Other ap-
proaches that share the parametric nature of ANNs and have
been utilized to classify gene-expression profiles include Support
Vector Machines23. Thus far, these other methods have not been
fully explored to extract the genes or features that are most im-
portant for the classification performance and which also will be
of interest to cancer biologists24.

Here we have approached this problem using ANN-based
models. We calibrated ANN models on the expression profiles of
63 SRBCTs of 4 diagnostic categories. Due to the limited amount
of training data and the high performance achieved, we limited
our analysis to linear (that is, no hidden layers) ANN models.
Although other linear methods may perform as well, our
method can easily accommodate nonlinear features of expres-
sion data if required. To compensate for heterogeneity within
the tumor samples (which contain both malignant and stromal
cells) and for possible artifacts due to growth of cell lines in tis-
sue culture, we used both tumor samples (n = 23) and cell lines (n
= 40). Data from these samples is complementary, because tumor
tissue, though complex, provides a gene-expression pattern rep-
resentative of tumor growth in vivo, while cell lines contain a
uniform malignant population without stromal contamination.
Despite using only NB cell lines for calibrating the ANN models,
all four NB tumors among the test samples were correctly diag-
nosed with high confidence. This not only demonstrates the
high similarity of NB cell lines to the tumors of origin, but also
validates the use of cell lines for ANN calibration. The calibrated
ANN models accurately classified all 63 training SRBCTs and
showed no evidence of over-training, demonstrating the robust-
ness of this technique.

A potential difficulty with ANN-based pattern recognition
models is elucidating causal links from the output to the original

input data. To solve this problem and to identify the most signif-
icant genes, we calculated the sensitivity of the classification to a
change in the expression level of each gene. We produced a list
of genes ranked by their significance to the classification. Using
this list, we established that the top 96 genes reduced the mis-
classifications to zero, which opens the potential for cost effec-
tive fabrication of SRBCT subarrays in diagnostic use. When we
tested the ANN models calibrated using the 96 genes on 25
blinded samples, we were able to correctly classify all 20 samples
of SRBCTs and reject the 5 non-SRBCTs. This supports the poten-
tial use of these methods as an adjunct to routine histological di-
agnosis.

Although ANN analysis leads to identification of genes specific
for a cancer with implications for biology and therapy, a
strength of this method is that it does not require genes to be ex-
clusively associated with a single cancer type. This allows for
classification based on complex gene-expression patterns. For
example, the top 96 discriminating genes included not only
those that had high (61) or low levels (12 BL and 1 EWS) of ex-
pression in one particular cancer, but also genes that were differ-
entially expressed in two diagnostic categories as compared to
the remaining two. Of the 16 genes highly expressed only in
EWS, two (MIC2 and GYG2) have been previously described18,25.
MIC2 immunostaining is currently used to diagnose EWS; how-
ever we find that although MIC2 detects EWS with high sensitiv-
ity, it alone cannot be used to discriminate EWS as it was also
expressed in several RMSs.

Our method identifies genes related to tumor histogenesis, but
includes genes that may not normally be expressed in the corre-
sponding mature tissue. Of the 14 genes that have not yet been
reported to be highly expressed in EWS, 4 (TUBB5, ANXA1,
NOE1 and GSTM5)26–29 were neural-specific genes—lending more
credence to the proposed neural histogenesis of EWS (ref. 30).
Twenty genes were highly expressed only in RMS, including
eight specific for muscle tissue and five (FGFR4, IGF2, MYL4,
ITGA7 and IGFBP5)15,31–34 related to myogenesis. Among the lat-
ter, IGF2, MYL4 and IGFBP5 expression has been reported in RMS
(refs. 35,36), and only ITGA7 and IGFBP5 were found to be ex-
pressed in our two normal muscle samples. Of the genes specifi-
cally expressed in a cancer type, 41 have not been previously
reported, including 7 ESTs with no current known function. All
of these warrant further study and might provide new insights
into the biology of these cancers. For example, FGFR4, a tyrosine
kinase receptor that is expressed during myogenesis and pre-
vents terminal differentiation in myocytes15,17, was found to be
highly expressed only in RMS and not in normal muscle. The rel-
atively strong differential expression of FGFR4 in RMS was con-
firmed by immunostaining of tissue microarrays (data not
shown). Although the high expression of FGFR4 in most cases of
RMS indicates that it may be relevant to the biology of this
tumor, it is also expressed in some other cancers37 and normal
tissues38. This indicates that although FGFR4 expression in RMS
may be of biological and therapeutic interest, it is unlikely to be
applicable as a sole differential diagnostic marker for these tu-
mors.

As the main purpose of this study was to optimize the classifi-
cation of these cancers, we used a stringent quality filter to in-
clude only the genes for which there were good measurements
for all samples. This may remove certain genes that are highly
expressed in some cancers, but not expressed in other cancers, or
may appear not to be expressed because of an artifact in a partic-
ular cDNA spot. However, we found that this quality filtration
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produced more robust prediction models and led to the identifi-
cation of a set of 96 genes highly relevant to these cancers.
Nonetheless, we expect that this list can be expanded by the use
of more comprehensive arrays and larger sample sets for train-
ing.

Here we developed a method of diagnostic classification of
cancers from their gene expression signatures using ANNs. We
also identified in ranked order the genes that contributed to this
classification, and we were able to define a minimal set that can
correctly classify our samples into their diagnostic categories.
Although we achieved high sensitivity and specificity for diag-
nostic classification, we believe that with larger arrays and more
samples it will be possible to improve on the sensitivity of these
models for purposes of diagnosis in clinical practice. To our
knowledge, this is the first application of ANN for diagnostic
classification of cancer using gene-expression data derived from
cDNA microarrays. Future applications of these methods will in-
clude studies to classify cancers according to stage and biological
behavior in order to predict prognosis and thereby direct ther-
apy. We believe this offers an alternative and powerful tech-
nique for the detection of gene-expression signatures, and the
discovery of novel genes that characterize a diagnostic subgroup
may also identify new targets for therapy.

Methods
Cell culture and tumor samples. The source and other information for the
cell lines and tumor samples used in this study are described in
Supplemental Table A (for the training set) and Table 1 (for the test set). All
the original histological diagnoses were made at tertiary hospitals, which
have reference diagnostic laboratories with extensive experience in the di-
agnosis of pediatric cancers. Approximately 20% of all samples in each cat-
egory were randomly selected, blinded and set aside for testing. To
augment this test set, we added 4 neuroblastoma tumors and 5 non-SRBCT
samples (also blinded to the authors performing the analysis). The EWSs
had a spectrum of the expected translocations, and the RMSs were a mix-
ture of both ARMS containing the PAX3-FKHR translocation and embryonal
rhabdomyosarcoma (ERMS). The NBs contained both MYCN amplified and
single copy samples. The NHLs were cell lines derived from BL (see
Supplemental Table B for details of all samples). The conditions for cell cul-
tures and the methods for extracting RNA from cell lines were described5.

Microarray experiments. Preparation of glass cDNA microarrays, probe la-
beling, hybridization and image acquisition were performed according to
the standard NHGRI protocol (http://www.nhgri.nih.gov/DIR/LCG
/15K/HTML/protocol.html). Image analysis was performed using DeArray
software39. The cDNA clones were obtained from Research Genetics
(Huntsville, Alabama) and were their standard microarray set, which con-
sisted of 3789 sequence-verified known genes and 2778 sequence-verified
ESTs.

Data analysis. We filtered genes by requiring that a gene should have red
intensity greater than 20 across all experiments. The number of genes that
passed this filter was 2308. Each slide was normalized across all experi-
ments such that the relative (or normalized) red intensity (RRI) for each
gene was defined as: RRI = mean intensity of that spot/mean intensity of fil-
tered genes. The natural logarithm (ln) of RRI was used as a measure of the
expression levels. Hierarchical clustering and MDS plots were performed as
described5.

To allow for a supervised regression model with no over-training (when
we have low number of parameters as compared to the number of sam-
ples), the dimensionality of the samples was reduced by PCA (ref. 40) using
centralized ln(RRI) values as input. Thus each sample was represented by 88
numbers, which are the results of projection of the gene expressions using
PCA eigenvectors. We used the 10 dominant PCA components for subse-
quent analysis. We classified the training samples in the 4 categories using a
3-fold cross validation procedure: the 63 training (labeled) samples were
randomly shuffled and split into 3 equally sized groups (see Fig. 1a). Each

linear ANN model was then calibrated with the 10 PCA input variables (nor-
malized to centralized z-scores) using 2 of the groups, with the third group
reserved for testing predictions (validation). This procedure was repeated 3
times, each time with a different group used for validation. The random
shuffling was redone 1250 times and for each shuffling we analyzed 3 ANN
models. Thus, in total, each sample belonged to a validation set 1250 times,
and 3750 ANN models were calibrated. For each diagnostic category (EWS,
RMS, NB or BL), each ANN model gave an output between 0 (not this cate-
gory) and 1 (this category). The 1250 outputs for each validation sample
were used as a committee as follows. We calculated the average of all the
predicted outputs (a committee vote) and then a sample is classified as a
particular cancer if it receives the highest committee vote for that cancer. In
clinical settings, it is important to be able to reject a diagnostic classification
including samples not belonging to any of the four diagnoses. Therefore, to
be able to reject classifications we did as follows. A squared Euclidean dis-
tance was computed for each cancer type, between the committee vote for
a sample and the ‘ideal’ output for that cancer type; normalized such that it
is unity between cancer types (see Supplemental Methods). Using the 1250
ANN models for each validation sample we constructed for each cancer
type an empirical probability distribution for the distances. Using these dis-
tributions, samples are only diagnosed as a specific cancer if they lie within
the 95th percentile. All 3750 models were used to classify the additional 25
test samples.

The sensitivity to the different genes is determined by the absolute value
of the partial derivative of the output with respect to the gene expressions,
averaged over samples and ANN models (see Supplemental Methods). A
large sensitivity implies that changing the expression influences the output
significantly. In this way the genes can be ranked.

Acknowledgments
We thank K. Gayton, C. Tsokos, T. Fadiran, J. Lueders and R. Walker for their
technical assistance; M. Ohlsson for valuable discussions on ANNs; R. Simon,
M. Bittner, Y. Chen and S. Gruvberger for their helpful comments regarding the
data analysis; and M. Tsokos, L. Helman and C. Thiele for cell lines supplied
from the NCI. J.S.W. was in part supported by the Charles & Dana Nearburg
Foundation. M.R. was in part supported by the Swedish Research Council and
the Knut and Alice Wallenberg Foundation through the SWEGENE consortium.
C.P. was in part supported by the Swedish Foundation for Strategic Research.

RECEIVED 26 JANUARY; ACCEPTED 18 APRIL 2001

1. Pizzo, P.A. Principles and practice of pediatric oncology. (Lippincott-Raven,
Philadelphia, 1997).

2. Triche, T.J. & Askin, F.B. Neuroblastoma and the differential diagnosis of small-,
round-, blue- cell tumors. Hum. Pathol. 14, 569–595 (1983).

3. Taylor, C. et al. Diagnosis of Ewing’s sarcoma and peripheral neuroectodermal tu-
mour based on the detection of t(11;22) using fluorescence in situ hybridisation. Br.
J. Cancer 67, 128–133 (1993).

4. McManus, A.P., Gusterson, B.A., Pinkerton, C.R. & Shipley, J.M. The molecular
pathology of small round-cell tumours—relevance to diagnosis, prognosis, and
classification. J. Pathol. 178, 116–121 (1996).

5. Khan, J. et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA
microarrays. Cancer Res. 58, 5009–5013 (1998).

6. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by
gene expression profiling. Nature 403, 503–511 (2000).

7. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by
gene expression profiling. Nature 406, 536–540 (2000).

8. Golub, T.R. et al. Molecular classification of cancer: class discovery and class predic-
tion by gene expression monitoring. Science 286, 531–537 (1999).

9. Bishop, C.M. Neural Networks for Pattern Recognition. (Clarendon Press, Oxford,
1995).

10. Heden, B., Ohlin, H., Rittner, R. & Edenbrandt, L. Acute myocardial infarction de-
tected in the 12-lead ECG by artificial neural networks. Circulation 96, 1798–1802
(1997).

11. Silipo, R., Gori, M., Taddei, A., Varanini, M. & Marchesi, C. Classification of arrhyth-
mic events in ambulatory electrocardiogram, using artificial neural networks.
Comput. Biomed. Res. 28, 305–318 (1995).

12. Ashizawa, K. et al. Artificial neural networks in chest radiography: application to the
differential diagnosis of interstitial lung disease. Acad. Radiol. 6, 2–9 (1999).

13. Abdolmaleki, P. et al. Neural network analysis of breast cancer from MRI findings.
Radiat. Med. 15, 283–293 (1997).

14. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display
of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868
(1998).

15. deLapeyriere, O. et al. Expression of the Fgf6 gene is restricted to developing skele-

©
20

01
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/m

ed
ic

in
e.

n
at

u
re

.c
o

m
© 2001 Nature Publishing Group  http://medicine.nature.com



NATURE MEDICINE • VOLUME 7 • NUMBER 6 • JUNE 2001 679

ARTICLES 

tal muscle in the mouse embryo. Development 118, 601–611 (1993).
16. Jaakkola, S. et al. Amplification of fgfr4 gene in human breast and gynecological

cancers. Int. J. Cancer. 54, 378–382 (1993).
17. Shaoul, E., Reich-Slotky, R., Berman, B. & Ron, D. Fibroblast growth factor recep-

tors display both common and distinct signaling pathways. Oncogene 10,
1553–1561 (1995).

18. Kovar, H. et al. Overexpression of the pseudoautosomal gene MIC2 in Ewing’s sar-
coma and peripheral primitive neuroectodermal tumor. Oncogene 5, 1067–1070
(1990).

19. Kumar, S., Perlman, E., Harris, C.A., Raffeld, M. & Tsokos, M. Myogenin is a specific
marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embed-
ded tissues. Mod. Pathol. 13, 988–993 (2000).

20. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in
human cancer. Nature Genet. 14, 457–460 (1996).

21. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406,
747–752 (2000).

22. Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J.
Med. 344, 539–548 (2001).

23. Brown, M.P. et al. Knowledge-based analysis of microarray gene expression data by
using support vector machines. Proc. Natl. Acad. Sci. USA 97, 262–267 (2000).

24. Furey, T.S. et al. Support vector machine classification and validation of cancer tis-
sue samples using microarray expression data. Bioinformatics 16, 906–914. (2000).

25. Mu, J. & Roach, P.J. Characterization of human glycogenin-2, a self-glucosylating
initiator of liver glycogen metabolism. J. Biol. Chem. 273, 34850–34856 (1998).

26. Lee, M.G., Loomis, C. & Cowan, N.J. Sequence of an expressed human beta-tubu-
lin gene containing ten Alu family members. Nucleic Acids Res. 12, 5823–5836
(1984).

27. Savchenko, V.L., McKanna, J.A., Nikonenko, I.R. & Skibo, G.G. Microglia and astro-
cytes in the adult rat brain: comparative immunocytochemical analysis demon-
strates the efficacy of lipocortin 1 immunoreactivity. Neuroscience 96, 195–203
(2000).

28. Nagano, T. et al. Differentially expressed olfactomedin-related glycoproteins
(Pancortins) in the brain. Brain Res. Mol. Brain Res. 53, 13–23 (1998).

29. Takahashi, Y., Campbell, E.A., Hirata, Y., Takayama, T. & Listowsky, I. A basis for dif-
ferentiating among the multiple human Mu-glutathione S- transferases and molec-
ular cloning of brain GSTM5. J. Biol. Chem. 268, 8893–8898 (1993).

30. Cavazzana, A.O., Miser, J.S., Jefferson, J. & Triche, T.J. Experimental evidence for a
neural origin of Ewing’s sarcoma of bone. Am. J. Pathol. 127, 507–518 (1987).

31. McKarney, L.A., Overall, M.L. & Dziadek, M. Myogenesis in cultures of uniparental
mouse embryonic stem cells: differing patterns of expression of myogenic regula-
tory factors. Int. J. Dev. Biol. 41, 485–490 (1997).

32. Strohman, R.C., Micou-Eastwood, J., Glass, C.A. & Matsuda, R. Human fetal muscle
and cultured myotubes derived from it contain a fetal-specific myosin light chain.
Science 221, 955–957 (1983).

33. Song, W.K., Wang, W., Foster, R.F., Bielser, D.A. & Kaufman, S.J. H36-alpha 7 is a
novel integrin alpha chain that is developmentally regulated during skeletal myo-
genesis. J. Cell. Biol. 117, 643–657 (1992).

34. Green, B.N. et al. Distinct expression patterns of insulin-like growth factor binding
proteins 2 and 5 during fetal and postnatal development. Endocrinology 134,
954–962 (1994).

35. El-Badry, O.M. et al. Insulin-like growth factor II acts as an autocrine growth and
motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ. 1,
325–331 (1990).

36. Khan, J. et al. cDNA microarrays detect activation of a myogenic transcription pro-
gram by the PAX3-FKHR fusion oncogene. Proc. Natl. Acad. Sci. USA 96,
13264–13269 (1999).

37. Holtrich, U., Brauninger, A., Strebhardt, K. & Rubsamen-Waigmann, H. Two addi-
tional protein-tyrosine kinases expressed in human lung: fourth member of the fi-
broblast growth factor receptor family and an intracellular protein-tyrosine kinase.
Proc. Natl. Acad. Sci. USA 88, 10411–10415 (1991).

38. Hughes, S.E. Differential expression of the fibroblast growth factor receptor (FGFR)
multigene family in normal human adult tissues. J. Histochem. Cytochem. 45,
1005–1019 (1997).

39. Chen, Y., Dougherty, E.R. & Bittner, M.L. Ratio-based decisions and the quantita-
tive analysis of cDNA microarray images. Biomedical Optics 2, 364–374 (1997).

40. Jollife, I.T. Principal Component Analysis. (Springer, New York, 1986).

©
20

01
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/m

ed
ic

in
e.

n
at

u
re

.c
o

m
© 2001 Nature Publishing Group  http://medicine.nature.com


